遗传咨询

遗传学10大奇异事实

遗传学10大奇异事实

脱氧核糖核酸(DNA)在遗传和生命维持方面的作用是20世纪最伟大的发现之一。我们的每个细胞里都盘卷着差不多两米长的DNA。对DNA的研究远未达终点,但是目前的一些发现便已经让人觉得眼界大开。
  10、杂种优势
我们都了解近亲繁殖有危险,因而最好不要和近亲结婚。西班牙17世纪晚期的君主卡洛斯二世因为家里的长辈近亲婚配太严重,以至于曾祖父母只有4位,而不像正常情况下的8位。瞅一眼他的画像和自传就能知道,亲上加亲实在是个馊主意。
但是如果你能让由两个家族各自近亲繁殖生下来的两个人结合,就会发生一些有意思的事情。这种结合产下的后代身体健康水平往往高于双亲,有时候甚至高于普通大众。这种效应叫做杂种优势。一个可能的解释是,近亲繁殖产下的个体若要存活,必须具备某些有价值的性状来抵消那些有害的性状。来自另一个家族的近亲繁殖后代拥有不同的基因。二者的杂交会受益于那些优良的显性性状而掩盖掉负面的隐性性状。这也解释了当下纯血统狗杂交育种的趋势。
  9、表观遗传学
  遗传学的问题在于,你刚刚以为自己弄明白了,一大堆复杂概念又冒了出来。你从父母那里分别继承了一套基因,你以为这两套基因会以和睦而平等的方式互动。可惜啊,性别的不平等并没有局限在表面。
  表观遗传学(Epigenetics)研究的是在不改变实际DNA序列的情况下能够对DNA造成的变化。对DNA施加的化学修饰可以增强或者减弱一条基因的活跃程度。这种所谓的印记(imprinting)对于后代的健康有着很大的影响。
天使人综合症(Angelman syndrome)和普瑞德-威利综合症(Prader-Willi syndrome)两种疾病都是由于继承了同一种遗传信息而引起的,但是二者的症状大不相同。同样的DNA序列产生了不同的后果,而这完全取决于你的这一段DNA从谁那里继承:如果这段DNA来自你的母亲,你会罹患普瑞德威利综合征;如果来自你的父亲,你则会遭遇天使人综合征。
天使人综合症(Angelman syndrome)和普瑞德-威利综合症(Prader-Willi syndrome)都是由于第15号染色体印迹基因区15q11-13部分(红色)的基因缺陷导致的。如果基因缺陷来自母亲,或从父亲那得到两条带此缺陷的基因,便会造成天使人综合症;而若基因缺陷来自父亲,或从母亲那得到了两条带缺陷的基因,会造成普瑞德威利综合症
  8、嵌合现象
人们常说我们所有细胞里的DNA都是一样的。这话大体上没错——除了变异的情况。假如突变发生在胚胎初期,比如8个或16个细胞的时候,那么突变细胞的所有子细胞都会继承这种突变。这会造成成年有机体的一些部位带有变异,而其他部位没有。有时候造成的变化肉眼可见,比如一块皮肤或者一片毛发颜色有异,或者出现局灶性疾病。当人身上有两种色素细胞同时发展时,就有可能呈现名为布莱施科线(Blaschko's lines)的条纹。
布莱施科线被认为是胚胎细胞的迁移轨迹线
有时候子宫里会出现两个胚胎在发育的早期阶段发生融合的状况。两个胚胎的细胞相互交混,作为一个单独的个体继续发育。这样的有机体会拥有两套DNA。由于胚胎发育阶段的细胞迁移,最终的有机体会是由两种细胞的很多团块拼合而成。在这种嵌合现象中,有机体被称为嵌合体。
  7、重复
  DNA是以3个碱基对为1节(密码子)编码蛋白质的。当DNA被复制时,有一个校对过程确保复制品和原版是一样的。一旦有错误逃过了校对过程的审查,变异就发生了。这样的事情大约每几百万个碱基对才会出现一次。但是一些特定的区域比其他地方更容易累积变异。有时候同一个密码子会重复很多次,这叫做密码子重复。这增加了校对机制工作的难度。
密码子重复导致亨丁顿舞蹈症在与亨丁顿舞蹈症(Huntington’s disease)有关的基因编码中,CAG重复了很多次。如果在复制过程中多溜进去一套CAG碱基对,校对机制便有可能检查不出来,因为两边都有很多重复的CAG。多一个CAG的结果是产生的蛋白质多了一个氨基酸。幸运的是这个蛋白质有一定灵活性,可以容纳些许多余。只有当变异的长度超过一个关键值时才会发病。而由于错误会逐代积累,亨丁顿舞蹈症在子代身上会比父代更加严重。
  6、病毒整合
我们的基因组内存在来自病毒的基因
  你的DNA中大约有8%来自侵入你祖先的基因组后就再也没离开的病毒。一些病毒——逆转录病毒——通过将它们的DNA插入宿主来繁殖,复制产生的新病毒得以继续传播。但是有时候病毒整合进宿主之后,发生了一个使其失去活性的变异,这样的“死”病毒便留在了宿主的基因组里,细胞每次分裂都要被复制一次。如果病毒整合进了一个终有一天要形成卵子或者精子的细胞中,那么它将被传递给后代的每一个细胞。通过这种方式,随着时间的推移,基因组里累积了越来越多整合进来的病毒。
因为整合进来的病毒可以传递给所有后代,人们可以通过失活病毒的存在来推断演化路线图。如果一个病毒进入基因组的时期相对较晚,那么只有非常接近的物种才会拥有它。如果它们是在很久以前进入宿主基因组,那么很多相关的物种都应该拥有它。有一种这样的病毒在几乎所有哺乳动物基因组内都被发现了,我们认为它源自1亿年前的一次感染。
  5、跳跃基因 
同一玉米上可能有着不同颜色的玉米粒
  每逢金风送爽的时节,就该清理一下被烧烤折腾了一夏的肠胃了。但是在你啃煮玉米之前,先好好地看一眼。它有可能为你赢得诺贝尔奖。有时候玉米粒会呈现多种颜色,哪怕它们的基因都一样。芭芭拉·麦克林托克(Barbara McClintock)发现,这种颜色变化的原因是基因组的一部分在发育过程中的某些特定阶段被去除了。这些又被称为“跳跃基因”的转座子在很多基因组中都有发现。它们本质上就是一段DNA序列,能够让DNA链被切开,去掉一个片段,然后再被连上。
  基因组的一部分来来去去是件危险的事情,很多疾病也确实和跳跃基因有关。但是,人类基因组几乎有一半都与这些转座子相关。它们从何而来?最大的可能是它们来自那些有来无回的病毒朋友。研究者们仍在试图弄清楚,为什么这些不稳定的区域会被保存下来,但它们令基因组得以重组和创新,这或许会是因素之一。
    4、新功能化
  人类基因组包含大约20,000条编码蛋白质的基因。很多基因相互之间非常相似,显然互为变异版。通过比对基因序列,科学家们有可能对基因的功能做出准确的猜测。但我们怎么会拥有变异了的基因版本呢?
人类基因组中有着许多极相似的基因
转座子似乎起到了一定作用。如果DNA的一个片段被复制进入一条新的DNA后又跳出,我们便拥有了同一个基因的两个副本。变异往往是致命的,但是如果有两条基因供你摆弄,那么只要一条能保持活跃,另一条就可以随便变异。因此一条基因得以演化出新的功能。这个过程叫做新功能化(neofunctionalization)。
  3、定制DNA
地球上所有的生命形式都有着同样的基本遗传结构。在每一处有生命的地方都存在着同样的4种碱基——它们是构建DNA的基本单位。这一事实有两种可能的解释:要么仅有这4种碱基可以形成稳定的DNA,要么生命仅仅诞生过一次,所有的后代都继承了这4种碱基作为生命的材料。
为什么生命选择了ATCG这四种碱基作为书写遗传信息的字母?
研究人员创造了与生物原有的碱基结构几乎完全一致的化学物质,以便对这些核苷酸相似物进行检验。相似化学物质被注入细胞之后,人们发现它们并入了DNA。以这种方式形成的DNA在结构和功能上与天然的DNA非常类似。这一结果表明,我们都在使用的DNA本质上无非是几十亿年前我们的第一位祖先某次选择的结果。 
  2、染色体重排
  染色体是真核生物基因组所在的大型DNA组段。人类拥有23对染色体,黑猩猩则拥有24对。如果人类和黑猩猩关系很近,那么这个区别该如何解释?我们可以猜测,在黑猩猩和人类分道扬镳之后,有两对染色体在人类细胞内融合成了一对。当我们观察人类2号染色体时,会发现它很像是两条较短的黑猩猩染色体融合。2号染色体甚至拥有两套染色体的特征,而其他都只有一套。这是怎么回事?
人类的2号染色体(下)可能源自猿类祖先中两条染色体的融合
当染色体被复制时,它们往往会经历一个再结合的过程。在这个过程中,成对染色体的相似区域相互交换。这具有演化方面的意义——这样的DNA混合可以产生更大的多样性。然而,有时候交换会错误地发生在不成对的染色体之间。这可能造成疾病,有时候可能还会把两条染色体拼接到一起。过去的某个时间,我们的祖先身上发生了这种事情,给我们留下了非常巨大的2号染色体,并将我们送上了当前这条演化道路。
  1、三亲之子
  人类基因组是由我们细胞核内的全部DNA组成的。然而,我们体内还有其他来源的DNA。线粒体是我们细胞的动力室。人们认为,线粒体其实是一种简单的细胞,在久远的过去的某段时间入侵了我们的细胞。这一理论的证据之一是线粒体拥有它们自己的DNA,而且独立复制。
胚胎形成时,它的基因组一半来自母亲,一半来自父亲。但是所有的线粒体都来自母亲的卵子。如果这些线粒体出现了突变,那么由此产生的所有线粒体后代都会携带这一突变。这往往是致命的。为了阻止这种事情的发生,一种潜在的治疗手段被开发出来——这种手段本质上会产生一名有3位父母的孩子。母亲的卵子会和通常一样与一枚精子结合,接下来胚胎细胞的细胞核会被取出,放置在一枚被去掉了细胞核的卵细胞中。因此,这枚细胞会拥有其母亲和父亲的DNA,以及第三人的线粒体DNA。



重要提示:本页提供的信息,不能代替医生的诊断和建议。

北京福佑龙惠

中国遗传病一站式诊疗平台及提供整体解决方案的先行者